文:基础与前沿研究院 图:基础与前沿研究院 / 来源:基础与前沿研究院 / 2019-04-10 / 点击量:9671

  2019年4月13日,由基础与前沿研究院主办的“基础论坛”第169期-174期邀请到国内外知名学者来校作学术交流。具体安排如下,欢迎师生参加。  

任志峰.png主讲人:任志峰

主 题:High Performance Thermoelectric Materials and Boron Arsenide Single Crystals with High Thermal Conductivity

时 间:2019年4月13日(周六),上午9:30

地 点:沙河校区通信楼818室


  个人简介:

  Zhifeng Ren, M. D. Anderson Chair Professor of Physics at the University of Houston and Director of the Texas Center for Superconductivity. He received his PhD from the Chinese Academy of Sciences, His research has been on superconductors, carbon nanotubes, thermoelectrics, solar absorbers, flexible transparent conductors, enhanced oil recovery, water splitting, and BAs for high thermal conductivity. He is a fellow of the American Physical Society, the American Association for the Advancement of Science, and the National Academy of Inventors. He won the Edith and Peter O’Donnell Award in Science from The Academy of Medicine, Engineering & Science of Texas (TAMEST), Humboldt Research Award, etc. He is also a highly cited researcher in Physics.(A total citation of > 39,000 with an H-index of 93 based on Web of Science)

  报告摘要:

  Thermoelectric materials are very promising for both cooling and heat conversion into electrical power with a long lifetime. In the first half of this talk I will present our recent progress on advancing the materials with higher figure-of-merit. In the second part, I will present our effort on achieving thermal conductivity higher than 1000 W m-1 K-1 at room temperature in boron arsenide single crystals. Such a high thermal conductivity is only second to diamond, very important to high power electronics. 

王双印.png

主讲人:王双印

主 题:电催化剂缺陷化学

时 间:2019年4月13日(周六),上午10:45

地 点:沙河校区通信楼818室

个人简介:

  王双印,国家杰出青年基金获得者, 爱思唯尔中国高被引学者(化学)。现为湖南大学二级教授,博士生导师。2006年本科毕业于浙江大学化工系,2010年在新加坡南洋理工大学获得博士学位,随后在美国凯斯西储大学, 德克萨斯大学奥斯汀分校、英国曼彻斯特大学(玛丽居里学者)开展研究工作。主要研究方向为电催化剂的表面调控。目前,已在国际著名期刊Nature Commun., JACS, Angew. Chem,Adv. Mater.等发表SCI论文100余篇,总引用9000余次,h-index为47。

  报告摘要:

  电催化过程主要发生在电催化剂的表面。因此,在催化剂设计中,针对电催化剂的表面设计与调控至关重要。那么,什么样的表面对电催化性能较为有利呢?早期的大量研究表明,电催化剂的表面缺陷,包括杂质缺陷、空位缺陷、填隙缺陷等,对电催化性能的提高具有正效应。事实上,多数催化剂晶体在制备过程中都不可避免地引入各种类型的缺陷。但是,如何可控的产生缺陷、调控缺陷类型、控制缺陷浓度还需要深入系统的研究。与此同时,缺陷与性能之间的构效关系也需要进一步的梳理。因此,围绕缺陷化学,对电催化剂进行表面调控具有非常大的研究空间。


丁洪.png主讲人:丁洪

主 题:铁基超导体中的马约拉纳零能模

时 间:2019年4月13日(周六),上午11:15

地 点:沙河校区通信楼818室

个人简介:

  丁洪,1990年毕业于上海交通大学,1995年获美国伊利诺伊大学芝加哥分校的物理博士。1998年至2008年在美国波士顿学院物理系历任助理教授、副教授、正教授。2008年至今为中科院物理所的研究员。长期从事凝聚态物理的实验研究,主要利用光电子能谱研究高温超导体和拓扑材料的电子结构和物理机理。1996年在铜基高温超导体发现赝能隙,2008年在铁基超导体中观察到s-波超导序参量,2015年在固体材料中发现外尔费米子,2018年发现在铁基超导体中发现马约拉纳零能模。在国际学术会议作邀请报告超过90次。1995年获美国威斯康星同步辐射中心的阿拉丁光源奖,1999年获美国的斯隆奖,2003获美国波士顿学院杰出科研成就奖,2005年获中国国家杰出青年科学基金B类,2010年获中国侨界“创新人才”贡献奖在学术期刊上发表了240多篇学术论文,被SCI引用超过13700次。1999年获美国的斯隆奖,2011年被选为美国物理学会会士,2018年获欧洲先进材料奖,2018年入选CCTV年度科技创新人物。

  报告摘要:

  1937年意大利物理学家马约拉纳预言了正反粒子相同的马约拉纳费米子。近年来人们预言在凝聚态系统中可能存在马约拉纳费米子和马约拉纳零能模,后者遵守非阿贝尔统计,可以应用到量子计算中,因此寻找马约拉纳零能模是当前物理界竞争激烈的研究热点。目前马约拉纳零能模的寻找目标主要集中在通过超导近邻效应而具有等价p波超导的异质结构。我们通过几年的摸索,找到了一个通过多能带作用而具有等价p波超导单质材料的新途径。2018年我们利用角分辨光电子能谱在铁基超导体Fe(Te,Se)中观测到拓扑超导表面态,接着又利用扫描隧道谱在该材料中发现了高纯度的马约拉纳零能模。这个新途径将铁基超导和拓扑结合起来,具有高纯度、高Tc、单一材料的优点,开辟了研究和操纵马约拉纳零能模的新方向,并将该领域的研究从复杂的量子器件领域带入到简单的量子材料领域。


邹勃.png主讲人:邹勃

主 题:压力诱导发光

时 间:2019年4月13日(周六),上午11:45

地 点:沙河校区通信楼818室

个人简介:

  邹勃,博士,吉林大学超硬材料国家重点实验室教授,“长江学者”特聘教授、国家杰出青年科学基金获得者。2002年12月,博士毕业于吉林大学超分子结构与材料国家重点实验室,师从张希院士。2001-2005年,先后在德国明斯特大学和多特蒙德大学做联合培养博士和博士后。2006年回到吉林大学,独立建组,建立了高压化学实验室,开始从事高压化学研究。提出了压力诱导发光的概念,发现了系列高压相截获的方法,在压力传感、压力开关等领域具有潜在应用前景。主持多项基金委重点项目和面上项目。现任第1届亚洲高压科学技术理事会理事、中国晶体学会第1届极端条件晶体材料专业委员会委员、中国晶体学会第6届理事会理事、中国材料研究学会极端条件材料与器件分会副主任委员、中国化学会光化学专业委员会委员。共发表包括Nature Commun, J Am Chem Soc和Angew Chem Int Ed等在内的SCI论文280余篇。

  报告摘要:

  大部分发光材料的荧光在高压下都是猝灭的(PCQ),然而仍有少部分发光材料的荧光在高压下是增强的(PIE)。我们课题组发现了四种压力诱导发光的机制。第一种是部分基于聚集诱导发光的材料,在压力作用下,材料的分子内旋转受限或振动受限,使得分子的非辐射跃迁减少,发光材料的荧光增强;第二种是基于高压下激子结合能增强,发光材料的荧光增强;第三种是高压对缺陷的调制,材料的缺陷发光增强;第四种是高压对纳米材料配体的调控,使得系列纳米材料的荧光增强。这将丰富高压化学研究方向,在压力开关和压力传感器等领域具有潜在的应用。


刘冰冰.png主讲人:刘冰冰

主 题:Novel Structured Carbon Materials under High Pressure

时 间:2019年4月13日(周六),下午16:00

地 点:沙河校区通信楼818室

个人简介:

  刘冰冰,吉林大学教授。1989年获吉林大学物理系学士学位;1995年在吉林大学超硬材料国家重点实验室获博士学位并留校工作,期间赴瑞典于默奥大学进行了两年博士后研究,现任吉林大学超硬材料国家重点实验室主任。长期从事高压物理和纳米材料的基础研究,在高压新结构、新性质以及高压新材料研究方面取得了系列结果。在Science、PNAS、PRL、Adv Mater 等刊物上发表SCI论文200 余篇。教育部长江学者、国家杰出青年基金获得者、中组部“万人计划”人选、中国青年女科学家奖获得者。

  报告摘要:?

  Design and synthesis of new carbon materials have been attracting intensive attention due to their application in various fields. The study of carbon nano materials under high pressure provides us a very effective method to the creation of new carbon materials, especially superhard material which is hardly discovered at ambient condition because of the appearance of nanometer scale size effect and the novel high pressure behavior. Deeply understanding those unusual high pressure structures and physical phenomena also unveils new aspects of the intrinsic physics of nanomaterials. Fullerene, for example C60 is an important member and a representative zero-dimensional nano material in carbon family which has twice as much bulk modulus as diamond. It provides us an ideal carbon source to study novel phase and design new carbon materials induced by high pressure. In this presentation, several examples on high pressure induced novel structural phase transition in recently studied typical nano-confined fullerene will be outlined, including unique long range ordered crystal with amorphous nano clusters as building blocks (OACC) ?in solvated C60 and C70 crystals which brings new physical insight to understand order and disorder concept and new approach to design superhard carbon materials, a new carbon allotrope with a fully sp3 bonded monoclinic structure (termed V carbon) from compressed C70 inside of single wall nanotubes (C70 peapod). These findings present a new strategy for constructing new carbon material with application of high pressure and nano-carbon material as building blocks.

 

张勇.png主讲人:张勇

主 题:New upconversion nanomaterials for fluorescence based bioassays and bioimaging

时 间:2019年4月14日(周日),下午16:00

地 点:沙河校区通信楼818室

个人简介:

  Yong Zhang is a Provost Chair Professor in Department of Biomedical Engineering, National University of Singapore (NUS), and senior faculty member of NUS Graduate School for Integrative Sciences and Engineering (NGS). His current research interests include nanobiophotonics, nanomedicine, and microfluidic devices. Professor Zhang has authored over 300 peer-reviewed research papers in international journals such as Nature Medicine, Nature Communications, Nature Protocols, PNAS, and Chemical Reviews, and has delivered more than 50 Plenary/keynote/invited talks in prestigious international conferences. He has won numerous research awards such as IES Prestigious Engineering Achievement Award and NUS Young Investigator Award. He is a Fellow of Royal Society of Chemistry (FRSC) and a Highly Cited Researcher amongst the World's Most Influential Scientific Minds named by Clarivate Analytics. He is interviewed by Thomson Reuters Science Watch for his highly cited and hot research papers and his research achievements have been featured in The Straits Times, Lianhe zaobao, Innovation Magazine, Nature Publishing Group (NPG) Asia Materials and Nanotechweb, etc.

  报告摘要:

  Traditional fluorophores including fluorescent dyes/proteins and quantum dots (QDs) have been widely used for various imaging and detection applications. These are based on ‘downconversion fluorescence’, converting high energy photons (UV or visible) to low energy photons (visible to NIR). Upconversion nanomaterials present a new technology for sensitive imaging and detection in various fields. Unlike traditional fluorophores, upconversion nanomaterials emit detectable high energy fluorescence in the UV/visible/NIR range upon irradiation with NIR light based on a process termed ‘upconversion’. They can be used for ultrasensitive interference-free biodetection/imaging because most biomolecules do not have this upconversion property. The major advantages of this approach include but are not limited to: multi-color, low background autofluorescence, single wavelength excitation, good photostability, and spectral unmixing.


                        基础与前沿研究院

                         2019年4月10日




编辑:卜一珂  / 审核:王晓刚  / 发布者:陈伟